The Lymantria dispar IPLB-Ld652Y Cell Line Transcriptome Comprises Diverse Virus-Associated Transcripts

نویسندگان

  • Michael E. Sparks
  • Dawn E. Gundersen-Rindal
چکیده

The enhanced viral susceptibility of the gypsy moth (Lymantria dispar)-derived IPLB-Ld652Y cell line has made it a popular in vitro system for studying virus-related phenomena in the Lepidoptera. Using both single-pass EST sequencing and 454-based pyrosequencing, a transcriptomic library of 14,368 putatively unique transcripts (PUTs) was produced comprising 8,476,050 high-quality, informative bases. The gene content of the IPLB-Ld652Y transcriptome was broadly assessed via comparison with the NCBI non-redundant protein database, and more detailed functional annotation was inferred by comparison to the Swiss-Prot subset of UniProtKB. In addition to L. dispar cellular transcripts, a diverse array of both RNA and DNA virus-associated transcripts was identified within the dataset, suggestive of a high level of viral expression and activity in IPLB-Ld652Y cells. These sequence resources will provide a sound basis for developing testable experimental hypotheses by insect virologists, and suggest a number of avenues for potential research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transfection of Lymantria dispar insect cell lines.

Lepidopteran cell lines derived from the gypsy moth, Lymantria dispar, have not been widely used in protein expression studies or systems because they are weakly adherent, have specific growth requirements and characteristics, and are generally difficult to transfect. Using lipid-mediated transfection of a reporter plasmid, we modify the standard method for transfection of L. dispar-derived emb...

متن کامل

Characterization of the replication cycle of the Lymantria dispar nuclear polyhedrosis virus.

The life cycle of the Lymantria dispar nuclear polyhedrosis virus (LdMNPV) was characterized through analysis of budded virus (BV) release, the temporal formation of polyhedra, the temporal transcription pattern of representative early, late, and hyper-expressed late genes, and the onset of DNA replication in the Ld652Y cell line. Transcripts from the LdMNPV immediate early gene G22 were detect...

متن کامل

Host range factor 1 from Lymantria dispar Nucleopolyhedrovirus (NPV) is an essential viral factor required for productive infection of NPVs in IPLB-Ld652Y cells derived from L. dispar.

Host range factor 1 (HRF-1) of Lymantria dispar multinucleocapsid nucleopolyhedrovirus promotes Autographa californica MNPV replication in nonpermissive Ld652Y cells derived from L. dispar. Here we demonstrate that restricted Hyphantria cunea NPV replication in Ld652Y cells was not due to apoptosis but was likely due to global protein synthesis arrest that could be restored by HRF-1. Our data a...

متن کامل

Induction of apoptosis in an insect cell line, IPLB-Ld652Y, infected with nucleopolyhedroviruses.

Ld652Y cells derived from the gypsy moth, Lymantria dispar, were infected with seven different nucleopolyhedroviruses (NPVs) including those from Autographa californica, Bombyx mori (BmNPV), Hyphantria cunea (HycuNPV), Spodoptera exigua (SeMNPV), L. dispar, Orgyia pseudotsugata (OpMNPV) and Spodoptera litura (SpltMNPV). The results showed that Ld652Y cells infected with BmNPV, HycuNPV, SeMNPV, ...

متن کامل

Lymantria dispar iflavirus 1 (LdIV1), a new model to study iflaviral persistence in lepidopterans.

The cell line IPLB-LD-652Y, derived from the gypsy moth (Lymantria dispar L.), is routinely used to study interactions between viruses and insect hosts. Here we report the full genome sequence and biological characteristics of a small RNA virus, designated Lymantria dispar iflavirus 1 (LdIV1), that was discovered to persistently infect IPLB-LD-652Y. LdIV1 belongs to the genus Iflavirus. LdIV1 f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2011